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Here  E i (x )  deno tes  the e x p o n e n t i a l  in tegra l  func t ion  
def ined as 

x < 0 :  E i ( x ) =  i ( e ' / t )  d t  
- - c o  

x > 0 :  E i ( x ) = - l i m ( - ~ + ~ )  ( e - ' / t )  -x (22) 

and  C = 0 . 5 7 7 2 1 5 . . .  is the  Eule r  cons tan t .  
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Abstract 

Stat is t ical  ana lys i s  reveals  tha t  the X-ray  b a c k g r o u n d  
r igorous ly  fol lows a c o u n t i n g  stat is t ical  d i s t r ibu t ion  
p rov ided  the m e a s u r e m e n t s  are m a d e  u n d e r  t ru ly  
f ixed-t ime cond i t i ons  in a small  (sin 0) /A interval .  
The  ope ra t i ona l  p rocedures  to ensure  this  are not  
trivial.  First,  the  des ign  of, for example ,  the  E n r a f -  
N o n i u s  C A D - 4  d i f f rac tomete r  is such tha t  measure -  
ments  m a d e  at cons t an t  scan speed  at dif ferent  Bragg 
angles  m a y  have  s o m e w h a t  different  m e a s u r i n g  t imes.  
Fa i lure  to correct  for this  leads  p r imar i ly  to an 
increase  in the va r iance  o f  the data.  Second ,  the use 
of  a rap id  p rescan  fo l lowed,  w h e n  app rop r i a t e ,  by a 
s lower  ma in  scan leads to a set o f  p rescan  da ta  b iased  
towards  overes t imates  of  b a c k g r o u n d  values  and  
u n d e r e s t i m a t e s  of  raw intensi t ies .  The  effort needed  
to extract  f rom the da ta  u n b i a s e d  es t imates  of  
averages  a n d  var iances  o f  the X-ray  b a c k g r o u n d  is 
reward ing .  It can  lead to a lower ing  of  the s t a n d a r d  
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dev ia t ion  of  a net  in tens i ty  by up to one  o rde r  o f  
magn i tude .  This  in tu rn  m e a n s  tha t  m a n y  more  
in tens i t ies  o f  weak  ref lect ions are re l iab ly  es t ima ted  
and  are hence  wor th  i n c l u d i n g  in the s t ruc ture  deter-  
mina t ion .  This  obv ious ly  leads  to inc reased  mode l  
accuracy .  An e x a m p l e  is given.  A change  in m e a s u r i n g  
p rocedu re  is r e c o m m e n d e d  wh ich  will inc rease  the 
eff iciency of  the s t a n d a r d  b a c k g r o u n d - p e a k - b a c k -  
g r o u n d  p rocedure .  

Introduction 

The presen t  s t a n d a r d  d a t a - r e d u c t i o n  p r o c e d u r e  oper-  
ates on each  ref lect ion m e a s u r e m e n t  sepa ra t e ly  and  
thus  comple t e ly  ignores  a n y  k n o w l e d g e  tha t  migh t  
have  been  acqu i r ed  pr io r  to the cur ren t  m e a s u r e m e n t .  
This  is su rp r i s ing  cons ide r ing  the great  impac t  
ascr ibed  to expe r i ence  in all aspects  of  life. More  
specif ical ly ,  s tat is t ical  m e t h o d s  are ava i l ab le  to separ-  
ate the effects o f  r a n d o m  m e a s u r e m e n t  errors  f rom 
sys temat ic  factors ,  as well as to ext ract  f rom da ta  sets 
i n f o r m a t i o n  wh ich  can be used  to j u d g e  the qua l i ty  
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of a single observation, provided the single observa- 
tion and the data set are samples drawn from the 
same population. In this way relationships between 
measurements can be discovered which help to 
improve the accuracy of X-ray diffractometry. One 
example may prove our point. The net intensity I is 
routinely obtained by subtracting the local back- 
ground B from the raw intensity R: 

I = R - y B .  

The factor y represents the ratio of the times used to 
measure R and B. Unfortunately, owing to the shape 
of the crystal and the design of the diffractometer, y 
may vary slightly for reasons which are not immedi- 
ately obvious. However, because R and B are pair- 
wise related via the observed intensity profile, 
Lehmann & Larsen (1974) were able to design a 
procedure to optimize 3,. Since measurements of back- 
ground are numerous in diffractometric experiments, 
a statistical investigation of them seemed appropriate. 
By doing so we follow in the footsteps of French & 
Wilson (1978), who in their seminal paper on the 
application of Bayesian statistics on the problem of 
negative intensities state 'We believe that a complete 
structure determination based on a Bayesian treat- 
ment of the data will yield a significant improvement, 
especially when the available data are weak in 
intensity'. In this paper we will show that with the 
proper manipulation the distribution of B values, 
P(B), can be well described by counting statistics, 
and that the average (B) and spread cr2(B) are only 
dependent upon (sin 0)/A. Once P(B) is known 
several possibilities arise for improving accuracy. For 
example, it will no longer be necessary to measure 
the background at each reflection. A much smaller 
number of observations suffices to produce P(B) with 
a preset accuracy. This may save up to 30% of the 
time currently spent on single-crystal measurements. 
Furthermore, one can devise statistically correct 
criteria to detect outliers and design (software) repair 
procedures. Or one may calculate a statistically cor- 
rect estimate of a data point, which for some reason 
escapes measurement. We will also demonstrate that 
knowledge of P(B) allows the contribution of the 
background to 0-2(I), the variance of the net intensity, 
to be eliminated almost completely. This translates 
into a reduction of detection limits by as much as a 
factor often. The effort to obtain the extra information 
is small: data reduction becomes a two-step pro- 
cedure. In the first step one determines P(B) from 
the recorded data and in the second step one uses 
this information in the evaluation of net intensities. 
It is appropriate to stipulate here what we understand 
by an intensity observation. We take the view that all 
measurements are made under correct diffractometer 
conditions (e.g. background measurements do not 
contain tails of reflection peaks, scan widths are cor- 
rectly chosen, a crystal monochromator is used etc.). 

The procedures discussed in this work are strictly 
speaking only valid for measurements performed on 
an Enraf-Nonius CAD-4, because accuracy is 
obviously linked to the design and mode of operation 
of the diffractometer. However, similar arguments 
will apply to other diffractometers. Therefore, it seems 
useful to recall here some details of the data-collec- 
tion process on an Enraf-Nonius CAD-4. After set- 
ting the crystal in the appropriate orientation to 
record the intensity profile of a particular reflection, 
the instrument performs a preliminary scan (prescan) 
in which the chosen scan angle a is scanned at high 
speed. The time needed to scan a is divided into 96 
equal intervals and the number of counts collected 
during each interval is stored in the appropriate chan- 
nel of a 96-channel recorder. Obviously, each channel 
number can be associated with a particular value of 
the Bragg angle 0, given the wavelength h of the 
radiation and the value of a. Here, as usual, channels 
1 to 16 are considered to contain the so-called left 
background BL, channels 81 to 96 the right back- 
ground BR and channels 17 to 80 the raw intensity 
R. Table 1 gives inter alia the equations used in the 
CAD-4 logic while performing the background-peak- 
background (BPB) measurements. The ratio l(pre- 
scan)/tr[l(prescan)],  which is a program variable, is 
used to select one of several measuring strategies. In 
this work, if l (prescan)<0.33o-( l )  no final run is 
made and l(prescan) is used in the further analysis. 
We will refer to these data as prescan data. For-the 
sake of completeness we mention that it is also poss- 
ible for the prescan to be sufficient when the reflection 
is strong enough to give acceptable statistics even 
with such a fast scan. This never occurred in the data 
set used here. When, however, in this set l(prescan) > 
0.33tr(l) the measuring time t for the final scan is 
adjusted to give an operator-chosen precision (say 
1%) based on counting statistics. If t < t  . . . .  the 
maximum time allowed by the investigator, the fixed 
count strategy is chosen: the highest scan speed is 
selected which results in /(final) with the desired 
precision. Alternatively, if t>/max the fixed-time 
strategy is chosen. That is the slowest scan speed is 
selected which gives an actual measuring time -< t . . . .  
resulting in the highest number of counts attainable 
within the allowed time. We will refer to the latter 
data as fixed-time data. A complete description of 
the operational mode of the CAD-4 diffractometer is 
given by Schagen, Straver, Van Meurs & Williams 
(1988). 

Preliminary analysis of background values 

The data set used in this work is a routinely obtained 
set of measurements of a cyclic dipeptide. The struc- 
ture is monoclinic, P2~ (b axis unique), with four 
molecules per unit cell (Lenstra, Verbruggen, Bracke, 
Vanhouteghem, Reyniers & Borremans, 1991). The 
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Table 1. Survey o f  definitions and equations used in 
this work 

v scan s p e e d ( ° m i n  ' ) o f  measurement ;  
v ~  max imum scan speed ( 2 0 ' l ° m i n  -~) on CAD-4 ,  to which all data  

are scaled;  
C ( i )  number  of  counts  in channel  i; 
BL scaled left background;  
BR scaled right background;  
R scaled raw intensity;  
cr2(BL) variance of  BL, when count ing  statistics apply;  
tr2(BR) var iance of  BR; 
tr2(R) var iance of  R; 
n sample  size. 

B L = ( 1 6 g ) - '  ~ ( ' ( i )  (1) 
I = l  

9 6  

B R = ( 1 6 g )  ' ~ C(i) (2) 
= 8 1  

8 O  

R = ( 6 4 g ) - '  )[ C ( i )  (3) 
i . - , 7  

a2(BR)  = g - l B L  (4) 

~ r2 (BRj=g  ' BR (5) 

o'2(R) = g - '  R (6) 

g = v . . . .  / v (7) 

I = R - 2 ( B L +  BR) (8) 

¢r2( / ) = o~2( R ) + 4{o'2(BR) + ¢r2(BL)} (9) 

(BL) = n - ' ) [  BL (10) 
n 

( B R ) =  n ~ ) ' B R  (11) 
n 

(R)=  n-n ~.~ R (12) 
n 

(~r2(BL)) = n  ~ ) ' c r 2 ( B L ) = n ( B L ) / ~ g  (13) 

(¢r2(BR)) = n - t  7. o~2(BR) = n(BR)/)" g (14) 
n n 

(¢r2(R)) = n - t  ~," cr2(R) = n(R)/)[ g (15) 
,v n 

s2(BL) = ( n -  l ) - t  )[ ( B L - ( B L ) )  2 (16) 
n 

s2(BR) = ( n -  1 ) - '  ~ ( B R - ( B R ) )  2 (17) 
n 

s2(R) = (n - i ) - '  5" (R - ( R ) )  2 (F8) 
n 

molecules form two crystallographically independent 
chains in the same orientation and are separated by 
a vector (0.5; 0; 0.5), generating a pseudo-B centring. 
Consequently, most reflections with h + ! = 2n + 1 are 
much weaker than those with h + l = 2n, a feature that 
renders the set very suitable for the present statistical 
analysis. The systematic weakness of the intensities 
follows also from the high fraction of the prescan 
data (27%, n = 678) which is about half the fraction 
of fixed-time data (59%, n = 1474). Moreover, the 
prescan as well as the fixed-time data are about uni- 
formly distributed over the 0 space. The number of 
fixed-count data, concentrated at low 0 values, is 
rather small (14%, n --366). We will neglect them in 
this study, thereby avoiding statistical complications 
linked to small samples sizes. 

We scaled all data to the maximum scan speed and 
divided the sets (prescan and fixed time) into a 
suitable number of (sin 0)/A intervals to eliminate 

the complications arising from the slow decrease of 
background values with increasing Bragg angle 
(Keulen, 1969). The results are summarized in 
Table 2. 

First, we will analyse the prescan and fixed-time 
data together. For each (sin 0) /h interval we investi- 
gate whether the 'true' background can be regarded 
as a constant (that is the background is not related 
locally to the nearby raw intensity value) and its 
measurement is only influenced by random errors. 
This proved to be true, because each series of back- 
ground values exhibits a normal distribution 
{Gaussian of the form n ( B ) = e x p  [ - ( i x - B ) 2 / 2 s 2 ] ,  
where n(B)  signifies the frequency of B values,/z the 
sample average and s 2 the sample variance}. At this 
point we are able to describe a series of say 200 
background measurements by their/z and s 2, but s 2 
has no firm physical backbone yet. 

Further progress requires that the distribution also 
obeys counting statistics, i.e. follows approximately 
a Gaussian with/z = s 2. The time series of background 
values observed at the intensity control reflections 
showed this behaviour, but the distribution of B 
values over a series of hk! behaved erratically in most 
instances. An example of the latter can be seen in 
Table 3 in which the cumulative distribution functions 
of two samples (BL and BR, each containing 274 
values) are compared to the standard properties of a 
normal distribution. A mere glance at the data shows 
that the sample distributions are only moderately 
related to a normal distribution. Application of the 
Kolmogorov-Smirnov test (see e.g. Lindgren, 1976) 
at the 5% significance level shows that the hypothesis 
that the sample distribution is equal to the Gaussian 
must be accepted for BR data and rejected for the 
BL data. Evidently, we have to identify and correct 
for additional yet anonymous complicating factors 
(systematic errors). 

The fatal alternative would be that the background 
does not obey counting statistics because the values 
are related to the nearby intensity values, possibly by 
Rayleigh scattering. This would most probably show 
from Table 2 in correct behaviour [i.e. (BL)-=-(BR) 
and (o'2(BL)) = (0-2(BR)) = s2(BL)  = s2(BR)] of the 
prescan backgrounds (near weak or absent reflec- 
tions) and deviating behaviour [e.g. (BL)=(BR); 
(cr2(BL)) = (cr2(BR)) # s2(BL) = s2(BR)] of the fixed- 
time backgrounds (near strong reflections). For the 
prescan backgrounds (o '2(BL)),  (o'2(BR)), s2(BL) and 
s2(BR) appear indeed equal and their equality is 
confirmed by the generalized Wilcoxson-Mann- 
Whitney test (Lindgren, 1976) at 20% significance 
(two-sided). Such an equality is absent in the fixed- 
time backgrounds: (o '2(BL)) and (o '2(BR))  belong to 
one population and s2(BR) and s2(BL) to another. 
However, for almost every (sin 0)/A interval (BR) 
and (BL) of the prescan data are larger than (BR) 
and (BL) of the fixed-time data. This observation rules 
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Table 2. Summary of  data set; see Table 1 for definitions of  symbols 

(s in  0 ) /X  n (BL) (R)  (BR) (o"2(BL)) (o"2(R)) (o"2(BR)) s2(BL) s2 (R)  s2(BR) ~ g 

Prescan data 
0 -0-16 l 56.7 162-0 43.3 18.9 54.0 14.4 - - - 3 
0.16-0.31 22 18.0 62-5 16.6 6.0 20.8 5.5 11-6 64.8 7.5 66 
0.31-0.39 32 15.7 57.7 15.3 5-2 19.2 5.1 4.4 45.7 8.6 96 
0.39-0.45 38 14-5 50.7 12.6 4.9 16.9 4-2 6-7 56.4 4.8 114 
0.45-0-49 72 11-7 39.0 9.3 3.9 13.0 3.1 5.0 40.7 3-8 216 
0.49-0.53 88 10.4 35.5 8.8 3-5 l 1.8 2.9 4.4 40.5 4.2 264 
0.53-0.56 111 9.1 3 !.9 7.9 3.0 10.6 2.6 2.7 21.9 2.7 333 
0-56-0.59 110 8.8 30.5 8. l 2.9 10.2 2.7 3-4 26.8 3.4 330 
0.59-0-62 120 8.2 29. l 7.8 2.8 9.7 2.6 2.4 18.7 2.6 360 
0.62-0.65 84 8.2 29.3 7.8 2-8 8.9 2.6 2.9 14.4 2.5 252 

Fixed-time data 
0 -0.16 l 37.4 152-8 32.4 2.0 8.0 1-7 - - - 19 
0.16-0-31 l l2  16.9 231.1 16-4 0-9 12-4 0.9 3-8 39025 4.0 2128 
0.31-0.39 232 14.9 121.0 14-3 0.8 6.4 0.8 1-8 5486 3.0 4408 
0.39-0.45 178 13.2 110-8 12.0 0.7 5"8 0.6 1.6 6626 3.8 3382 
0-45-0.49 163 11.3 85.4 10.0 0.6 4-6 0".5 1.5 3686 2.3 2987 
0.49-0.53 168 9-7 54.1 8.4 0"5 3.0 0.5 1.0 565 1.0 3024 
0.53-0.56 179 8.7 42.0 7.8 0.5 2.3 0.4 0.8 216 0.9 3222 
0.56-0.59 180 8-1 37-4 7.6 0.4 2- I 0.4 0.9 81 0.8 3240 
0.59-0.62 154 7.6 34.8 7.3 0.4 I "9 0.4 0.6 80 0.6 2772 
0.62-0.65 107 7.6 34-5 7.3 0.4 1.9 0.4 0-7 68 0.9 1926 

out Rayleigh scattering of the diffracted beam as an 
important factor. It suggests that a systematic bias 
affects the prescan background rather than the fixed- 
time background and that the cause is connected with 
the measuring strategy. Further inspection of Table 
2 shows that the ratio s2/o. 2 is about 1 for the prescan 
background, but larger than 2 for the fixed-time back- 
ground. Thus, an error source produces in the latter 
a variance as important as the variance due to count- 
ing statistics. 

Finally, we note that s2/o.2 for the fixed-time data 
increases with decreasing Bragg angle. These indica- 
tions point to a cause connected to the diffractometer. 

In the following sections we will show how (BR) 
and (BL) of the prescan data are biased estimates of 
the 'true' background and how all s 2 values are biased 
estimates of the 'true' background variance o .2 . 

Bias as a result of  measuring strategy 

Prescan data exist as a separate subset because the 
investigator wishes to save measuring time and 
chooses a strategy to omit those reflections from the 
final scan for which, say, l /o . ( l )  < 0.33. This criterion 
allows through reflections for which by coincidence 
the raw intensity is underestimated and/or  the back- 
ground is overestimated in preference to reflections 
for which by coincidence the raw intensity is overesti- 
mated and/or  the background is underestimated. 
Therefore, underestimates of the background tend to 
be selectively missing from the set and prescan back- 
grounds are overestimates of the 'true' background. 
The sample means (BL) and (BR) will be too high, 
while the sample variances: s2(BL) and s2(BR) will 
be lower than the variances due to counting statistics. 
The fixed-time set is not limited by a selective criterion 
and thus this bias does not exist. Hence, in this case 

Table 3. Cumulative distribution function of a 
normal distribution also obeying counting statistics 
(/z = o-2=7.69), compared to a sample of  274 BL 

values and to a sample of 274 BR values 

Both s a mp le s  are d r a w n  f rom the  set o f  T a b l e  2 in the  (sin 0)/,~ 
in te rva l  0 . 5 9 - 0 . 6 2  , ~ - t .  

< - 2 o -  < - l o -  < - 0 o -  < + l o -  < + 2 t r  < + 3 o "  

Normal distribution 0.02 0-16 0.50 0.84 0.98 1-00 
Left-side sample 0.03 0.25 0.60 0.84 0-97 1.00 
Right-side sample 0.03 0.15 0.47 0.78 0.96 1.00 

(BR) and (BL) are more faithful estimates of the 'true' 
background. 

To quantify the impact of the selection criterion 
l /o .<  0.33 we performed a Monte Carlo simulation 
of a prescan measurement of a net intensity I of zero 
counts. For a reflection in the interval 0 . 5 9 -  < 
(sin 0)/h-<0.62 ~-~ the best estimate of the back- 
ground is (BR)=(BL)=7-5  counts (Table 2) with 
(O.2(BR)) = (O.2(BL)) = 2.5 counts. The actual prescan 
is made at 1/3 of the maximum speed. So the local 
backgrounds BR and BL are equal to 22.5 counts and 
R is 90 counts. A series of 1000 (index j)  such 
measurements were simulated. Counting statistical 
error margins were included by setting a count rate 
BL(j) v BR(j) = 22.5 + k x 22.5 ~/2. The factor k is 
calculated by a Gaussian random generator. As gen- 
erating function we used ( - 2  In u~) ~/2 cos (Tru2), 
where ut and u2 are random numbers. If by doing so 
a negative BL(j) or BR(j) value occurred, it was set 
equal to zero. When the criterion I<0 .33o ' ( I )  was 
applied to the 1000 reflections 36% would trigger a 
final scan. The remaining 64% are thus typical for 
prescan data. They gave averages (BR) and (BL) = 8.4 
counts (at maximum speed) with a variance of 1.7 
counts. As the model requires, the average (8.4 
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counts) is larger than the unbiased average (7.5 
counts) and moreover it is in excellent agreement  
with the observed values (BR) = 8.2 counts and (BL) = 
7.8 counts (see Table 2). Since the biased background 
average can be directly enumera ted  from the unbiased  
value, the statement "background is a local constant" 
still holds. Turning to the variances one notes that in 
agreement  with the model  the Monte Carlo variance 
[o.2(counting s tat is t ics)+s2(select ion criterion) = 
1.7] is smaller  than o.2(counting s tat is t ics)= 2.5 and 
that s2(selection c r i te r ion)=  - 0 . 3 0  .2 (counting statis- 
tics). However, in contrast to expectations,  Table 2 
reveals that for most (sin 0)/ ; t  intervals the observed 
variances are larger than the counting statistical ones. 
A similar  discrepancy ( s2>o .  2) is present in the 
'unbiased '  fixed-time data. Thus, both subsets suggest 
a second external error source, preferably common 
to both sets, affecting the spreads. 

Bias as a result of  diffractometer design 

The Enra f -Non ius  CAD-4 has scan speeds between 
0.4 and 20.1 ° min -~. However, only those speeds are 
actually accessible for which the reduction factor 
(g~'Umax/Vactual) is an integer (l  <- g-< 50). On the 
other hand,  the angle to be scanned is enumera ted  
as a = ao+ 3 tan 0. Thus a cont inuously variable a is 
combined  with a set of  discrete scan speeds. This 
combinat ion  forces the scan time to become a con- 
t inuously adjustable parameter.  Fig. 1 gives as a func- 
tion of 0 the time spent in reality to measure reflec- 
tions in the so-called fixed-time set as they were 
measured in the part icular  scan mode used for this 
crystal [mode in which short-term intensity fluctu- 
ations are determined by a non-equal  test (Schagen 
et al., 1988)]. The relevant diffractometer settings are: 
signal profile scan width a = 2 + 0 . 5  tan 0; total scan 
width p e r f o r m e d =  1.5a and m a x i m u m  scan time 
( /max) spent on one scan = 90 s. It follows that real 
fixed-time measurements  only occur if a is constant 
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Fig. 1. Scan time as a function of  0 for so-called fixed-time 

measurements  (see text). 

because either 0 is constant  or 6 is zero. The latter 
is an unlikely event because 6 is used in the measure- 
ment  strategy to take care of wavelength dispersion 
(De Wolf  & Lenstra, 1984). In a series of  intensity- 
control measurements ,  however,  0 is constant. For 
this series the background was found to follow count- 
ing statistics (s 2= o .2--/z). Averaging, as we did in 
Table 2, over different values of O(hkl) we automati-  
cally randomized  the scan-t ime differences within 
each (sin 0)/A interval. Table 4 shows the time 
difference (At) spanning  each interval and the spread 
(s3) resulting from the time randomiza t ion  under  the 
assumpt ion  that the individual  reflections are uni- 
formly distr ibuted over the (sin 0)/A interval. This 
assumpt ion is better justif ied for small intervals at 
high 0 than for the larger interval at small  0. 

In the model  out l ined so far, the total variance is 
the sum of  the variances of three individual  error 
sources: counting statistics (Sl), selection criterion 
(s2) and time randomiza t ion  (s3). From the previous 
section we take s 2 = 0 for the fixed-time data and 
s 2 = - 0 . 3 s  2 for the prescan data. The latter will be a 
good estimate for the prescan set in the interval 0.59 -< 
(sin 0)/A -< 0 - 6 2  A -l ,  but a crude one for the other 
intervals. In fact the mean  and variance of a prescan 
set can vary considerably  as a function of the original 
distr ibution (i.e. before the selection criterion is 
applied).  Nevertheless,  a good agreement  is found 
(Table 4, last two columns)  when we compare  the 

s~)/s~ with the values of the sample  estimates of  (~ 2 2 
variance: counting statistical variance ratio. 

We conclude that the model  has l inked the observed 
variances (s 2) to the counting statistical variances 
(o "2) sufficiently well to explain  why s 2 is closer to o.2 
in prescan data than in fixed-time data and to show 
that at low 0 values the error due to time randomiz-  
ation is more important  than the error due to counting 
statistics. 

Improvement of background values 

In the previous sections we concluded that in each 
(sin 0)/A interval the observed backgrounds  can be 
adequately  described given the moments  of  the count- 
ing statistical distribution. This conclusion has far- 
reaching repercussions on the enumera t ion  of net 
intensities. In this section we discuss the improvement  
of accuracy in I values that follows from the improve- 
ment of  B values alone. Condi t ional  probabi l i ty  
theory is a part icularly useful tool to this end and 
therefore we recall here some aspects. The l ikel ihood 
function P(B] b) expresses the probabi l i ty  that the 
value B is exper imenta l ly  observed under  the condi- 
tion that the ideal value is b. The posterior funct ion 
P(b I B) expresses the probabi l i ty  density of  b under  
the condi t ion that B has been observed. Having 
measured  B, one is more interested in b and o.2(b) 
or, in mathemat ica l  language,  in the first and second 
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Table 4. Background variances influenced by the use of fixed scan speeds in connection with variable scan widths 

N o .  

Fixed-t ime data 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Prescan data 
2 
3 
4 
5 
6 
7 
8 
9 

10 

* Difference (in %) in 
times, respectively. 

S i / S l §  (s in  0 ) / A  At*  B a c k g r o u n d t  sl:~ s3:~ y. 2 2 

interval (,~-t) (%) (counts) (counts )  (counts)  Est imated Observed 

0.16-0.31 2.68 35431 188 950 26.5 4.3 
0-31-0.39 1.47 64357 254 946 14.9 3.0 
0.39-0.45 1.13 42613 206 482 6.5 4.2 
0-45-0.49 0.78 31812 178 248 2.9 3.5 
0.49-0-53 0.80 27367 165 219 2.8 2.0 
0.53-0-56 0.63 26582 163 167 2.1 1-9 
0.56-0" 59 0-62 25434 159 158 2.0 2-1 
0.59-0.62 0.66 20651 144 136 1.9 1.5 
0.62-0-65 0-67 14349 120 96 1-6 2-0 

0" 16-0"31 2"68 1142 34 31 1-5 1 '7 
0.31-0-39 1-47 1488 39 22 I-0 1.3 
0-39-0"45 1' 13 ! 545 39 17 0"9 1 '3 
0.45-0-49 0.78 2268 48 18 0.8 1.3 
0"49-0"53 0"80 2534 50 20 0"9 1 "3 
0 '53-0-56 0-63 2831 53 18 0-8 I-0 
0 '56-0-59 0-62 2789 53 17 0"8 I- 1 
0.59-0"62 0"66 2880 54 ! 9 0 '8 0"9 
0.62-0"65 0"67 2016 45 14 0"8 I "0 

scanning t imes spanning the interval At = 200 (tm~ X - tm,o) / ( tm~x + tin,n), with tm~ and tin, n as the max imum and min imum scan 

* Background measurement  (in c o u n t s ) =  0.5 (~ g) ( (BR)+(BL)) .  
~: Variance due to count ing statistics: st = (background) t /2 ;  var iance due to 2 -0-3s~ for prescan data; selection criterion: .s~ = 0 for fixed-time data;  s 2 = 

var iance due to t ime randomizat ion:  s 3 --0-01 At (background) .  
s , / . s t ;  [s2(BL) + s2(BR)]/[( tr2(BL))  + (ar2(BR))]. § Ratio of  total var iance to var iance (count ing statistics). Est imated:  ~ ,  2 2 observed:  

moments of P(bIB): 

1st moment b=(b lB)=~bP(b lB)db  (19) 

2ndmoment or2(b)=(b2]B)=~b2p(b]B)db. (20) 

P(BIb) and P(bIB) are related through the theorem 
of Bayes: 

P(bIB)=P(BIb)P(b) /P(B) ,  (21) 

where P(b) and P(B) are the unconstrained prob- 
abilities of b and B, respectively. The function P(b) 
is often called the 'prior'. We now set out to find the 
proper analytical expressions for the various proba- 
bility functions in (19)-(21). 

Since B follows counting statistics, B is linked to 
b through 

P(Blb )=exp[ - (B-b )2 /2b]  (22) 

provided B is not too small. If B represents a very 
small number of counts a Poisson distribution should 
replace the Gaussian form. 

In the situation at hand P(B) concerns one par- 
ticular experimental observation, having one par- 
ticular value, i.e. the one observed. Thus P(B) is a 
delta function and serves in (21) merely as a normaliz- 
ing factor. P(b) must express the prior knowledge 
('experience') one can add to the evaluation of the 
data at hand. When a background value B is observed 
near a particular reflection in a (sin 0)/A interval with 
N + 1 observations, the total background experience 
prior to the ( N +  1)th observation summarizes the 
available N data. Thus, it must account for N(B) 
counts and for a standard deviation {N(B)} t/2. For 

a single observation one has to divide by N and the 
prior distribution becomes 

P(b)=exp[- (b- (B) )2S /2(B)] .  (23) 

Since prior and likelihood are normal distribution 
functions denoted by P(b)= N(rnp, o .2 ) and 
P(BIb) N(mt,  2 = ort), the posterior P(b] B) = 
N[b, or2(b)] is also a normal distribution function. 
The relevant posterior moments are 

1 1 1 2 + 2 2 2 and b orpml orlmp 
- -  - -  2 or2(b) orp o1 or~+ot 

When the number of observations N becomes large, 
i.e. when experience really counts, these moments 
reduce to 

b=(blB)=(B) (24) 

or2(b) =(b2l B)=(B)/N. (25) 

Although (24) and (25) are the mathematical 
expressions of the well known worldly wisdom 
experientia vincit, they have not yet been implemented 
in X-ray diffractometry. On the simplest level one 
may do so by realising that a single observation of B 
counts is obviously a single draw out of the distribu- 
tion of potential (allowed) observations P(b]B). To 
improve the 'hit-and-run' quality of the single 
observation one may replace B and or2(B) by the first 
and second moments of P(b]B), i.e. by b and orE(b). 
On a somewhat deeper level one may realise that the 
average over N observations depends only on a frac- 
tion 1 /N  of the last observation. Thus, the benefit of 
the last experiment decreases rapidly with N and 
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Table 5. Comparison of (R) and (0-2(R)) of prescan data with 2{(BR)+(BL)} and 2q{(0-2(BR))+(0-2(BL))} 
of fixed-time data 

(s in 0 ) / A  ( A - - ' )  ( R )  2 { ( B R ) + ( B L ) }  ( t r 2 ( R ) )  2 q { ( c r 2 ( B R ) ) + ( t r 2 ( B L ) ) }  

o. 16-0.31 62.5 66-6 20-8 22.8 
0.31-0-39 57.7 58.4 19.2 20-3 
0.39-0.45 50.7 50.4 16.9 16.5 
0-45-0.49 39.0 42.6 13.0 13-4 
0.49-0-53 35.5 36.2 i 1.8 12-0 
0.53-0-56 31.9 33.0 10-6 10-8 
0-56-0.59 30.5 31-4 10.2 9.6 
0.59-0.62 29.1 29.8 9.7 9.6 
0.62-0.65 29-3 29-8 8-9 9.6 

becomes marginal at large N. The measuring strategy 
should be adapted to this if one wants to maintain a 
decent cost-to-benefit ratio. A successful strategy, 
however, combines caution with care. In our opinion, 
the standard preliminary scan, which includes the 
measurement of R(hkl) and B(hkl), should be the 
initial step. Then the local background observation 
B(hkl) should be tested against the prior distribution 
P(b), the knowledge of which could be obtained, for 
example, in the test phase when cell parameters, 
diffractometer settings etc. are determined. If B - b  
< 3(b) ~/2 we have 99-7% probability that B is compat- 
ible with the expected b, i.e. B is not an outlier [(22)]. 
If so, we only have to remeasure R(hkl) in the final 
scan and may omit the (re)measurement of B(hkl). 
This may save up to one third of the final scan time. 
Or, alternatively, the full scan time may be used to 
increase the value of R (hkl) by 30%. If B is identified 
as an outlier, the final scan should remeasure both R 
and B, which is today's default mode. In this connec- 
tion we recall that background values measured dur- 
ing a prescan show an average bias of 10% due to 
the strategy, geared to save measuring time. This 
strategy-introduced bias is easily eliminated by 
replacing B and 0-2(B) by b and 0-2(b). The latter are 
strategy independent. Thus a time-saving strategy can 
be applied for its own purpose without distorting in 
any way the final result. 

The splitting of R(hkl) into its components 

In the classic background-peak-background pro- 
cedure the net intensity I and 0-2(i) are calculated 
according to (8)-(9) (Table 1). One should realise 
that only R and 0-2(R) are directly accessible from 
experiment and that BR, BL, 0-2(BR) and 0-2(BL) are 
merely estimates of the true B and 0-2(B) which are 
needed. However, since we now accept the back- 
ground everywhere within a certain (sin 0)/A interval 
follows counting statistics, we can say that an experi- 
mental value of B - if it were possible to perform the 
experiment - must lead to a result that follows a 
distribution centred around (B) and with a variance 
o'2(B)=(B). The validity of this statement can be 
checked against the information available in Table 2. 

The prescan data form a select group of observations 
in which I = 0 .  Thus, the actual averages (R) and 
variances (0.2(R)) should be equal to 2(B) and 
2(0.2(B)), respectively, with values coming from out- 
side the prescan set. Unbiased estimates of 2(B) are 
2{(BL)+(BR)}, where (BR) and (BL) are taken from 
the fixed-time data. Similarly, unbiased estimates of 
2(0.2(B)) are 2q{(0.2(BL))+(0.2(BR))}, with (0.2(BR) 
and (0.2(BL)) taken from the fixed-time set and q 
representing the average scan speed of the fixed-time 
data divided by the average scan speed of the prescan 
data. Table 5 gives the comparison, showing an excel- 
lent agreement. In passing we note that (R) is always 
slightly smaller than 2{(BR) + (BL)}, reflecting the fact 
that the prescan data set favours data with an under- 
estimate of R. 

Having established that ~r2(B)=2(B) and that R 
follows counting statistics [i.e. 0.2(R) - R], it follows 
that 0.2(I)= I. If we incorporate the uncertainty on 
the background average itself, 0-2(I) increases slightly 
to 0-2(i) = I + 2(B)/N, a change which is only impor- 
tant for very small L The approach allows us to infer 
values for 0-2(R), 0-2(1) and 0-2(B) as if R, I and B 
could be separately measured. 

Just as we were looking for the 'ideal' background 
b after having measured one particular B value, we 
will now look for r and i, the ideal values of R and 
I, respectively. In other words we are looking for the 
first moment of P(r  I R) and P( i I l ). Starting as before 
from Bayes's theorem we have 

P(rIR)= P(RIr)P(r)/P(R).  (26) 

In contrast to the previous section P(r) is now prob- 
lematic. Under ordinary measuring conditions R is 
only measured once per reflection, so that the prior 
P(r) cannot be constructed in a similar way to P(b). 
For lack of better knowledge we represent P(r)  by a 
uniform density distribution and introduce the con- 
straint that r should always be positive, i.e. P(r)= 0 
for r < 0 .  In its present form [(26)] the properties of 
P(r] R) are dictated by P(RIr) because the single 
experiment should be and is more decisive than the 
(lack of) prior knowledge. 

With background and net intensity as independent 
elements and omitting the normalizing ~5 function 
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Table 6. Comparison of results of  analyses performed 
on intensity data after a classic treatment and after a 

Bayesian treatment 

Classical Bayesian 
data data  

Number of observations 1155 2518 
Number of variables 270 270 
IFobs- Fc~i¢ I 569 1483 

E [Fobs[ 12 398 15 186 
E wl Fob, - Fca,cl 2 3767 9410 
E wlF,,bsl 2 2 132 080 2 751 960 
E IFobs - Fca,cl/,~--, I Fob I 0.046 0"102 

swlE F 12iv  s~ 2~,/2 Y~t ~ obs-- c.~cl z.~ obsr ~ 0.042 0-058 
Maximum density in difference Fourier 0.22 0.28 

map (e A -3) 

P(R) ,  we can rewrite (26) as 

P ( r [ R ) ~ - P ( 2 B [ 2 b ) P ( 2 b ) P ( R - 2 B l i ) P ( i ) .  (27) 
R 

P(2b) is the background prior while P(2BI2b) and 
P ( R - 2 B  I i) are counting statistical distributions. 
P(i) is taken as a uniform density distribution for 
i->0, while P ( i ) = 0  for i < 0  and r =  i+2b. Using 
these distributions in (27) and using only those poten- 
tial observations for which I -- R - 2 B  one can calcu- 
late numerically (0  and o'2(i) as the best estimate of 
a net intensity and its variance. The calculations were 
executed using a preliminary version of the program 
BA YES. In the program the triple integration is per- 
formed by summing over the permitted values of r, 
b and B and takes into account the above-mentioned 
boundary conditions. As expected, values of (i) did 
not differ much from those of I, but o-2(i) values were 
considerably smaller than tr2(l) values predicted by 
counting statistics [(9), Table 1]. 

To check the consequences of the ideas outlined 
above, two independent least-squares analyses were 
performed. In the first we used the classic values B, 
I and o.(l) of 1155 reflections for which l ->3 t r ( l ) .  
In the second we used the Bayesian corrected values 
b, i and o.(i) for 2518 reflections for which i->3o.(i). 
In both analyses the same full-matrix least-squares 
strategy (concerning decisions which atoms should 
be refined anisotropically etc.) was used throughout 
(for details see Lenstra et al., 1991). Experimental 
structure factors were weighted individually accord- 
ing to o.(l)  or o.(i), respectively. Since o-(i),~ t r ( l ) ,  
an additional 1363 reflections with small net 
intensities are included in the second analysis; the 
weighting scheme also changed drastically, putting 
more emphasis on the lower-intensity reflections. The 
results of these analyses are summarized in Table 6. 
One notes only a small increase in Rw (from 0.042 
to 0-058) upon introduction of 1363 weak reflections, 
usually considered poorly determined. Unweighted 
R doubles (from 0.046 to 0.102), as can be expected. 
Addition of 1363 small F(hkl) values (average 0.2 

on an absolute scale) hardly changed ~ F(obs.) ,  but 
affected ~ [ F ( o b s . ) - F ( c a l c . ) ] .  The fact that 
Y'. [ F ( o b s . ) - F ( c a l c . ) ]  changes almost linearly with 
the number of contributing reflections is another indi- 
cation that the Bayesian treatment produces rather 
good intensity estimates. Furthermore, the maximum 
peak height in the difference Fourier map based on 
1155 reflections is 0.22 e ,~-3, whereas it is 0.28 e ,~-3 
with 2518 reflections. Thus, the selective addition of 
weak intensities hardly influenced the final noise 
level. The doubling of the number of observations in 
the least-squares calculations produced a decrease in 
the e.s.d.'s of the atomic parameters. As expected, 
the new e.s.d, values were about a factor 2 ]/2 smaller. 
The maximum observed parameter (positional as well 
as anisotropic thermal parameters) difference 
between the two converged models amounted to three 
times the e.s.d, of the first model. Most differences 
were found to be smaller than 1 e.s.d. Using i and 
tr(i) we found the maximum A/o- ratio to be 5 for 
the added weak data. With a background of about 
150 counts ((BR) = (BL) = 75 counts) a reflection with 
I - - 5  counts has in our philosophy a variance of 
5 + 150/200 = 6 counts, whereas in the standard BPB 
analysis o'2(I) = 150 + 5 + 4 × 75 = 455. With the latter 
estimate of variance all values A/o" would be smaller 
than 1, a statistically very unlikely event. We conclude 
that the new estimate (o ' ( i ) )=2 .4  counts is more 
realistic than the previous (o '( l))  = 21 counts. The use 
of individual o'(i) and i thus leads to many more 
reflections meeting the criterion i > 3o'(i) and thereby 
reduces the e.s.d.'s of both positional and vibrational 
parameters without producing any detectable 
artefacts in the analysis. 
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